Author Affiliations
Abstract
1 Nanjing University, College of Engineering and Applied Sciences, School of Physics, National Laboratory of Solid State Microstructures, Nanjing, China
2 Sun Yat-Sen University, School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, China
3 Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
4 University of Arkansas, Department of Physics, Fayetteville, Arkansas, United States
Laguerre-Gaussian (LG) modes, carrying the orbital angular momentum of light, are critical for important applications, such as high-capacity optical communications, superresolution imaging, and multidimensional quantum entanglement. Advanced developments in these applications demand reliable and tunable LG mode laser sources, which, however, do not yet exist. Here, we experimentally demonstrate highly efficient, highly pure, broadly tunable, and topological-charge-controllable LG modes from a Janus optical parametric oscillator (OPO). The Janus OPO featuring a two-faced cavity mode is designed to guarantee an efficient evolution from a Gaussian-shaped fundamental pump mode to a desired LG parametric mode. The output LG mode has a tunable wavelength between 1.5 and 1.6 μm with a conversion efficiency >15 % , a controllable topological charge up to 4, and a mode purity as high as 97%, which provides a high-performance solid-state light source for high-end demands in multidimensional multiplexing/demultiplexing, control of spin-orbital coupling between light and atoms, and so on.
orbital angular momentum Laguerre-Gaussian mode optical parametric oscillator 
Advanced Photonics Nexus
2023, 2(3): 036007
Author Affiliations
Abstract
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University, Nanjing 210093, China
In this work, we propose a new scheme to generate frequency-doubled vortex beams from a radially poled LiNbO3 micro-ring resonator based on nonlinear Cherenkov radiation. The near-infrared fundamental wave is resonant in the micro-ring, while the second harmonic is emitted from the resonator along the Cherenkov phase-matching direction. The topological charge of the emitted second-harmonic vortex beam is determined by both the azimuthal order of the whispering galley modes and the number of nonlinear grating elements. The field distribution and the conversion efficiency of the emitted vortex beam are investigated.
vortex beam nonlinear Cherenkov radiation micro-ring resonator second harmonic generation lithium niobate 
Chinese Optics Letters
2020, 18(7): 071902
Author Affiliations
Abstract
1 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
2 College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
We demonstrate an efficiency-enhanced picosecond (ps) mid-infrared radiation via optical parametric downconversion. Based on a cascaded periodically poled MgO-doped stoichiometric lithium tantalate crystal (MgO:sPPLT), a tandem optical parametric oscillation-optical parametric amplification (OPO-OPA) process is achieved. Compared with a single OPO process, the conversion efficiency obtains an enhancement of 71%.
140.0140 Lasers and laser optics 190.0190 Nonlinear optics 
Chinese Optics Letters
2016, 14(4): 041402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!